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We summarize ideas from Zermelo-Fraenkel set theory up to an axiomatic 
treatment for general relativity based on a Suppes predicate. We then examine 
the meaning of set-theoretic genericity for manifolds that underlie the Einstein 
equations. A physical interpretation is finally offered for those set-theoretically 
generic manifolds in gravitational theory. 

1. I N T R O D U C T I O N  

The discovery of  exotic differentiable structures on R 4 (Taubes, 1987; 
Kirby, 1989; Freed and Uhlenbeck, 1985) leads to the still open question 
of  their physical interpretation. The relation between "exotic differentiable 
structures" and their "physical  interpretation" is the same as the relation 
between a given syntactic structure and its underlying semantics. However,  
since the plethora of  differentiable structures for R 4 is a theorem in differen- 
tial geometry,  when we formalize that discipline (and, of  course, when we 
identify general relativity constructs with geometric constructs) within a 
standard axiomatic system such as the Zermelo-Fraenkel  system, the wealth 
we get at the syntactic level is exactly mirrored at the semantic level, that 
is, what is logically valid at the syntactic level is true in all models for that 
structure. 

We discuss in the present paper  a different kind of  wealth of  new 
objects that appear  in the interplay between general relativity's syntaxis and 
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its underlying semantics, namely that given to us by the use of forcing 
models for segments of the Zermelo-Fraenkel system. We describe here a 
simple axiomatic treatment for general relativity along the lines suggested 
by Suppes (1967) and elaborate on some of its forcing models. Suppes 
(1967) suggested that in order to axiomatize a theory--any mathematically 
formulated theory--we must define a set-theoretic predicate. A set-theoretic 
predicate is simply a predicate in the formal language of a given axiomatic 
set theory. We thus have a nice and convenient recipe for the construction 
of axiomatized versions for many theories in the realm of natural science, 
granted that they can be given a precise mathematical formulation, as all 
of  everyday mathematics can be formulated within an established axiomatic 
set theory such as the Zermelo-Fraenkel system. 

Da Costa and Chuaqui (1988) related Suppes predicates to the Bourbaki 
(1957) structure concept, and da Costa and Doria (1989b) gave a summary 
axiomatic treatment for most of classical (or first-quantized) physics. Now 
our main motivation for the development of a convenient axiomatic treat- 
ment for physics with the help of Suppes predicates lies in the huge 
multiplicity of models for the Zermelo-Fraenkel axioms: a glimpse at what 
can happen when we move from one model into another when dealing with 
an axiomatized physical theory has been given by da Costa and Doria 
(1989a) and Barros (1989). We wish to startin this paper a more systematic 
exploration of the meaning of concepts like set-theoretic genericity and 
similar forcing-related notions in physics. 

We restrict our attention to differentiable manifolds that may support 
(may underlie) the Einstein gravitational field equations. Section 2 is a 
resum6 of the main concepts we need from axiomatic set theory up to 
Suppes predicates in the da Costa-Chuaqui version: we also present in that 
section our own version for the axiomatics of general relativity. Section 3 
discusses cylindrical support manifolds for spacetimes, that is, 4-manifolds 
of the form C x R, where R are the reals and C is a compact smooth 
3-manifold. There, we show the following: all such manifolds are (set- 
theoretically) standard, that is, no new cylindrical spacetime supports are 
added to our theory when we move from a given model for the Zermelo- 
Fraenkel axioms into any larger forcing extension of that model. 

The situation is different when we turn to the noncompact case: here 
entirely new set-theoretically generic spacetime supports appear when we 
make adequate forcing extensions. That case is discussed in Section 4, where 
we also argue that the new spacetimes which are introduced by forcing are 
physically different from those in the original model. Section 5 ponders the 
relation between general covariance and set-theoretic genericity for our 
manifolds; it is seen that (modulo the action of local diffeomorphisms) 
open balls are standard, so that set-theoretical genericity in the case of 
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noncompac t  support  manifolds appears  as an essentially global property. 
(That  fact is clear even in the case of  generic exotic manifolds homeomorphic  
to R4.) However,  the interplay between "generici ty" and "globali ty" is not 
a simple one, as shown in the several examples which are introduced and 
discussed in that section. Section 6 elaborates on  the space ~ of  all spacetime 
supports.  We show in that  section that we cannot  formally prove within 
ZFC that set-theoretical genericity and randomness  coincide, modulo  a 
meager  set, when dealing with the objects in 5e. However,  we can convinc- 
ingly and rigorously argue in an informal way that both properties do 
coincide, but for a meager  set. The physical considerations that arise out 
of  our discussion are evaluated in Section 7. 

The present  paper  stems f rom a suggestion of  Cohen and Hersh (1967), 
where they notice that forcing models (and other metamathematical  tech- 
niques) may have the same import  to physics as non-Euclidean geometries. 
Papers in that direction are Benioff (1976a, b) as well as Augerstein (1984), 
Ross (1984), Chaitin (1982), da Costa and Doria  (1989a), and Barros (1989). 

2. A BRIEF SURVEY OF AXIOMATIC SET T H E O R Y  

We summarize here the main tools we require f rom axiomatic set theory 
and from the theory of structures. Complete references are given at the end 
of  the section. 

2.1. Z e r m e l o - F r a e n k e l  Set Theory 

Our work is done within pretty conventional mathematics,  that is, we 
use here the Zermelo-Fraenkel  set theory together with the Axiom of  Choice 
(ZFC).  ZFC is built upon a first-order logic that formalizes classical predi- 
c.ate logic with equality. Its axioms are as follows. 

ZFC! Extensionality. Two sets are equal if and only if they have 
the same elements. 

ZFC2 Pair. Given two sets x and y, there exists the set {x, y} with 
x and y as its sole elements. 

ZFC3 Union. Let x be a set of  sets. There exists a set w x whose 
elements are all elements of  the sets in x. 

ZFC4 Power set. There is a set whose elements are all the subsets 
of  a given set. I f  x is such a set, the set of  all its subsets is denoted 
~x, and is called the power  set of  x. 

ZFC5 Separation. Let y be a set, and let P be a property formulated 
in the language of  ZFC. Then there is a set x whose elements are 
precisely the members  of  x that satisfy P. 

ZFC6 lnfinity. There is a set that contains all the natural numbers.  
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Z F C 7  Replacement. Let F(x, y) be a formula in the language of 
ZFC, where x and y are free variables and for each x there is at 
most  one y so that F(x, y). The collection of  all sets y that satisfy 
F(x, y) is a set. In other words, {y: F(x, y) is true and x is a set} is 
again a set. 

ZFC8 Choice. Let x be a nonempty  set whose members  are again 
nonempty  sets. Then there is a set y containing one and only one 
element from every member  of  x. 

ZFC9 Foundation. Every set can be obtained from the empty set 0 
with the help of  set-theoretic operations. 

With separat ion and extensionality we prove the existence and unicity 
of  the empty set 0. Union,  separation, and power set allow us to collect 
members  of  a previously given set in order to form a new set; the restriction 
thus imposed on union and separation avoids well-known paradoxes like 
Russell 's. We can get all the usual mathematical  notions within ZFC: 
relations, functions; ordinals and cardinals; the natural  numbers;  integers, 
rationals, and reals; the complex field; and so on. Algebraic and topological 
constructs are also easily formalized within ZFC, so that we get axiomatized 
versions for the whole of  classical analysis, functional analysis, differential 
geometry and topology, and algebraic topology. The Axiom of  Choice 
allows us to have some of  the most powerful  tools in classical mathematics:  
the H a h n - B a n a c h  theorem in functional analysis: the G e l ' f a n d - N a i m a r k -  
Segal theorem in the theory of  Hilbert space rings of  operators;  the Tychonov 
theorem in topology; the theorem that asserts the existence of  nonmeasur-  
able sets on the real line with respect to Lebesgue measu re - - and  its beautiful 
consequence,  the so-called Banach-Tarski  "pa radox" ;  and so on. 

2 .2 .  M o d e l s  

Some collections of  ZFC sets are not sets; those collections are called 
proper classes (sets are improper classes). A class x - - i n  particular a se t - - is  
transitive if, whenever y s x, then y c x, that is, every element of  y is also 
an element of  x. A model for ZFC is a class where all ZFC axioms are 
satisfied. I f  the model is a set, it is a small model; otherwise it is a large 
model A first-order theory such as ZFC based on classical logic is consistent 
if  and only if it has a model.  However,  due to G/~del's incompleteness 
theorem, we cannot prove within ZFC that it has a small model, but we 
can show it for any finite set of  sentences of  ZFC (notice that the number  
of  axioms for ZFC is denumerably  infinite, as ZFC5 and ZFC7 are axiom 
schemata).  Standard models for ZFC are transitive models where the mem- 
bership relation interprets e .  We will only deal with standard models. I f  
ORD denotes the proper  class of  ordinal numbers,  and if lower-case Greek 
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letters refer to ordinals, then the proper class V given by the recurs/on below 
is the well-founded ZFC universe. V is the universal proper class: 

Vo=O (2.1) 

V,+, = ~(V~) (2.2) 

V~ = [._J B~, where a is a limit ordinal (2.3) 

V =  U V~ (2.4) 
o ~ c O R D  

Given any set x, there is a minimum ordinal o~ such that x c V~ ; a is 
the rank of  x, and we write a = rank(x). We can also form a hierarchy over 
a prescribed set x, 

Vo = x, x a set (2.5) 

V,~+~ = ~ V ~ ( x )  (2.6) 

V,~ = ~.) Va(x) ,  a a limit ordinal (2.7) 
f l < a  

v(x)= t.A V~(x) (2.8) 
o~ ~ O R D  

If  a is the least ordinal so that y ~ V~(x), then a is the rank o f y  relative 
t ox .  

Now let x be a ZFC set and let y c x. y is definable from x if and only 
if there is a formula F ( t l  . . . .  , t , ,  z) ,  the q , . . . ,  t, ~ x and kept fixed, so 
that z ranges precisely over the elements of y. We write w- - I I (x )  to 
abbreviate "w is the set of  subsets of x which are definable from x." By 
induction as above we have 

Lo = 0 (2.9) 

L~+a = II(L~) (2.10) 

L~ = U L~, a a limit ordinal (2.11) 

L =  U L~ (2.12) 
~ O R D  

L is the G6del  constructible universe; it is a proper class. We can also 
have a proper  class L(x) of  all sets which are G6del-constructible from x; 
the properties of  L(x) and the axioms it satisfies will strongly depend on x. 

Finally, if we add to ZFC a further axiom, the Standard Model Axiom, 
we may prove the existence of  a small model for ZFC, called Cohen's  
minimal  model. The  minimal model is countable, transitive, and G6del- 
constructible. 
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2.3. Boolean-Valued Models  

We are mainly interested in generic extensions of  models for ZFC. We 
consider here forcing models  and Boolean-valued models. Boolean-valued 
models are easier to understand;  they are a variant of  Cohen 's  forcing 
technique, and were developed in 1965-1967 by R. M. Solovay and D. S. 
Scott. Given a ZFC universe V, let B e V be a complete Boolean algebra (a 
Boolean algebra is complete when we can take arbitrary suprema and infima 
in it). The Boolean-valued universe is defined as follows: 

V B = ~  (2.13) 

B B B V~+I = V,, u F~ (2.14) 

V~ = [_J V~, a a l imi to rd ina l  (2.15) 

V B = U V~ (2.16) 
~ O R D  

F~ is the set of  all extensional functions whose domains are contained 
in V~ with values in B - - a  function y is extensional if, for x ~  
domain(y),y(x)= I Ix~Yll ,  where H " "  II denotes the truth value of  the 
expression (. �9 �9 ). Boolean-valued models thus substitute a 2-valued truth- 
value system for a ]Bl-valued system, where IRI is the cardinality of  the 
Boolean algebra. Moreover,  one has V n ~ P if and only if IIPtl = 1, that  is, 
P is true in V B if and only if its Boolean value is 1. Similarly, V ~ ~ 7 P  if 
and only if IIPII -- 0, that  is, P is false in V B if and only if its truth value is 
zero in V s. 

2.4. Forcing 

To see the relation between Boolean-valued models and Cohen 's  forc- 
ing models,  we again start f rom a universe V for the ZFC axioms and cut 
down f rom V to M, where M is a countable transitive model  for ZFC, with 
the help of  the L6wenheim-Skolem theorem. Given an infinite set a s M 
(which will in general be an ordinal number) ,  we form Fin(a,  2), the set of  
all maps f rom a to 2 = {0, 1} with finite domains.  [Fin(a,  2) s M, since finite 
objects are preserved.] An arbitrary map  g ~ 2 ~ may be pieced together 
f rom elements in Fin(a,  2), where we pick up finite sequences of  O's and 
l ' s  that  fit inside g. That  state of  affairs has the following interpretation: 
each p ~ Fin(a,  2) can be seen as coding some finite piece of  information 
about  a sentence in the language of  ZFC. In our case, we can prove that 
g ~ M. We can also show that for a convenient choice of  g the truth or 
falsity of  all sentences in our formal language is eventually decided by a 
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given p in g and by all its extensions in g. We then write "p I~- P," that is, 
the sequence p "forces"  the assertion P, and g = up,  where g contains all 
information that can be consistently pieced up from the p's. 

Now, Fin(a,  2) can be densely embedded in a 1-1 way into a complete 
Boolean algebra B. We topologize Fin(a, 2) with its natural order topology 
(which is here induced from B), and consider a countable set of  its dense 
subsets that are also in the countable model M. We require that the map 
g, parti t ioned into all its finite pieces p, meet each one of those dense 
subsets. Then g will be completed in B up to a generic ultrafilter U ( g ) c  
~ ( B ) .  Given the embedding Fin(a,  2 ) c  B, we then form the Boolean 
extension M s and define in that extension "p I~ P if and only if p ~< IlPll." 

To get the forcing extension, we define the equivalence relation x ~ y  
if and only if IIx = yll ~ u ( g ) ,  and x ~ uY if and only if IIx yll U(g). The 
quotient M B / U ( g )  via those relations is a model for the ZFC axioms, as 
M n and V B. From that quotient we then get by Mostowski collapse a 
countable transitive model M(g)  isomorphic to M ~ / U ( g ) ,  which is the 
forcing extension of M with respect to g. Everything that is true in V B and 
in M B is true in M(g) ,  but as one has to go through a quotient to get M(g) ,  
there are a few essential differences between both models. First, M B has in 
general an infinite set of  truth values, while M(g)  is a 2-valued model. As 
a result, we have Cohen's truth lemma, "p  I~ P if and only if M(g) I~  P." 
That result is not in general true of  M a and V~; also, M(g) is countable, 
while that condition is not required of V and V B. 

Forcing is more general than the technique of Boolean-valued models, 
since it can be applied to a smaller fragment of the ZFC axioms (in order 
to construct a Boolean algebra of high cardinality in V, one requires the 
Power Set Axiom, while forcing can be applied with much simpler tools). 

Finally, we notice that i f2  = {0, 1) ~ B denotes the 2-element (complete) 
Boolean algebra, V = V 2, and that equality induces a natural embedding 
V ~ V B, where x ~ V~--~ E V B; ~ is the standard image of x in V ~. 

2.5. Suppes Predicates 

We axiomatize general relativity within ZFC with the help of Suppes 
predicates. A mathematical structure E is a finite ordered collection of  sets 
of  finite rank over the union of  the ranges of  two finite sequences of sets, 
x~, x 2 , . . . ,  xm and Yl, Y2, . . . ,  Y~, where m > 0 and n I> 0. Thus, E is a ZFC 
set. The x's are called principal base sets, while the y's are auxiliary base 
sets. A Suppes predicate is a formula of set theory whose only free variables 
are those shown: 

P(E, xl . . . . .  xm, Ya , . . . ,  Y,) (2.17) 
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P is a conjunction of  two parts: one specifies the set-theoretic construc- 
tion of  E out of  the base sets, while the second part contains the axioms 
for the species of  structures in which we are interested. 

2.6. An Axiomat ic  Treatment for General  Relativity 

We sketch how one proceeds in the case of  general relativity. We must 
at first formalize within ZFC the concept of  spacetime, that is, a 4- 
dimensional real Hausdorff "smooth"  manifold ("smooth"  stands for 
C k, 0 <  k-< +co, Sobolev, or any differentiability condition on a function 
space), plus a Lorentzian metric---a symmetric 2-form, nowhere degenerate, 
with a + 2 signature. 

We start from the concept of  "real number."  Given the empty set 0 ,  
pair (ZFC2), power set (ZFC4), and separation (ZFC5) allow us to define 
the natural number sequence: 0 = 0 ,  1 = 0 u { ~ } ,  2 =  1 u{O},  and so on. 
Then infinity (ZFC6) gives us ~Oo, the set of  all natural numbers, and from 
the Cartesian product  OJo • OJo (obtained via union, separation, and power 
set), we get (via separation) the rational numbers Q. Dedekind cuts (again 
power set) finally give us the real numbers R, while a new Cartesian product  
(and separation) gives us the algebra of  complex numbers. 

Now a topological space is a pair (X, T), where X is an arbitrary 
set--anything in V---and T _  ~ ( X )  is the set of  open sets in X ( T  includes 
O and X and is dosed  under  arbitrary unions and finite intersections). The 
Suppes predicate for (X, T) tells us how to construct in ZFC that pair out 
of  a previously given set X, together with the restriction on T given by the 
open set axioms. 

We will also require algebraic structures, like those of  group and 
vectorspace. For that of  a vectorspace, one proceeds as follows: out of  a 
given set X (the principal set) and the reals R (the auxiliary set), we pick 
a distinguished element (0 c X, the null vector), and on X • X and R • X, 
which are sets of  finite rank over X u R, we impose the usual axioms for 
a real vectorspace. Again the Suppes predicate tells us how to obtain X • X 
and R •  out of  X w R  and subjects those sets to the corresponding 
vectorspace axioms. 

A differentiable manifold can be built from X u R, where X is a 
separable complete metric space (that is, a Polish space). We recover R 
from X u R via separation; we then get R", n ~ 0% kept fixed (n will be the 
manifold's dimension). From power set we get the finite product  sets R x 
and {Rn} x, whence we get by separation K(X, R ) c  R x and K(X, R " ) c  
(R") x, where K denotes a particular smoothness criterion (K may be, say, 
C ~ or Sobolev). We will also need the restrictions K (  U, R) and K (  U, R"), 
U c M ,  and the sets K ( X , X ) c X  x and K ( R " , R " ) c ( R " )  R'. Then the 
Suppes predicate for the species of  structures of  a differentiable manifold 
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formalizes in the language of  ZFC the preceding constructions, together 
with the axioms that relate local domains on M to R n and to coordinate 
maps from R n to R n. 

Now in order to get a spacetime, we take a real differentiable manifold 
M and form its tangent bundle T. M (which is set-theoretically constructed 
in ZFC through the usual equivalence classes of  tangent curves on M at a 
given point) as well as its dual cotangent bundle T. M. We then fix n = 4 
and from the tensor product  | T. M we pick up a symmetric nowhere 
degenerate 2-cotensor g with a +2 signature, g is our spacetime's metric 
tensor. The imposition of  a metric tensor g on M is equivalent to the 
requirement that one be given the following embedding: if P(M, G) denotes 
a principal bundle over M with G, a finite-dimensional Lie group, as its 
fiber, and if GL(4, R) is the 4-dimensional real linear group and if 0(3 ,  1) 
is the full Lorentz group, a +2 metric tensor on M is equivalent to the 
specification of  a particular embedding P(M, O(3, 1)) c P(M, GL(4, R)), 
M a spacetime manifold, where the latter bundle has as associated bundles 
the tensor bundles over M. We then get the couple (M, g), which will be 
our (formal) spacetime within ZFC. The Einstein equations, tensor fields, 
and the like will be cross sections of the several tensor bundles over (M, g). 

The following references cover the material in this section: historical 
details can be found in Kneebone (1963) and Scott (1967, 1985). A general 
reference on logic and axiomatic set theory is Manin (1977). On set theory 
one might also cite Krivine (1969) and Cohen (1966); forcing is given in 
detail in Cohen (1966), Shoenfield (1971), Odifreddi (1983), and Kunen 
(1983). The full theory of  Boolean-valued universes and its relation to 
forcing is seen in Bell (1985); the main results we have used from differenti- 
able geometry are in Kobayashi and Nomizu (1963). Finally, our presenta- 
tion of the axiomatics of general relativity is based on da Costa and Chuaqui 
(1988), da Costa and French (1990), and da Costa and Doria (1989b). 

Set-theoretic notations fol~low Kunen (1983) and Bell (1985); on 
geometry we follow Kobayashi and Nomizu (1963). When the same kind 
of  notation is used for different objects in our exposition, the distinction 
will be made clear from context;  or we will momentarily change the notation 
to suit our  purposes. 

3. CYLINDRICAL SPACETIMES IN BOOLEAN-VALUED 
UNIVERSES 

Our main interest lies in the behavior of differentiable 4-manifolds M 
that are carriers of  a spacetime structure (M, g) in the sense of general 
relativity within a Boolean-valued or forcing extension of the ZFC well- 
founded universe V or of  G6del 's  constructible universe L. 
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Almost all our theorems will either be ZFC theorems, and as such will 
be prefixed "ZFC ~- . . .  ," which means, "it may be deduced from the ZFC 
axioms t h a t . . .  ," or will be valid assertions within a particular model for 
a given set of  axioms; if M is that model, we put "M ~ . . .  ," which means, 
"it is true in M that . . . .  " This means that all our objects are found within 
some particular ZFC universe. 

3.1. Cylindrical Spacetime Supports Form a Countable Set 

Let C be a compact Hausdorff real, smooth 3-manifold. A cylindrical 
spacetime support M is any manifold diffeomorphic to C x R (when endow- 
ing M with a Lorentzian metric tensor one usually requires that the cross 
section C • {x}, x ~ R, be spacelike, but that condition plays no part in our 
present discussion). We make precise our concept of  "smoothness" in what 
follows. Also, in order to ensure that discs have an adequately smooth 
boundary,  we suppose that R" is endowed with the Euclidean metric. 

We need a counting result: 

Proposition 3.1. ZFC t- The set of all diffeomorphism classes of  cylin- 
drical spacetime supports is an infinite countable set. 

Proof  First we show that there are at least No compact 3-manifolds. 
There are exactly No compact 2-manifolds (for the classification theorem 
see Massey (1967) and Novikov et al. (1987)). Now if N is a compact 
2-manifold, N x S 1 is a compact 3-manifold, where S 1 is the 1-sphere. So, 
there are at least No compact 3-manifolds modulo diffeomorphisms. �9 

Now we show that there are at most No compact 3-manifolds modulo 
diffeomorphisms. Actually we prove two results: first we notice the following. 

Lemma 3.2. ZFC ~-Every C ~ ditterentiable finite-dimensional real 
manifold is triangulizable. 

Proof. See Whitehead (1940). �9 

Since we deal with compact manifolds, we proceed as follows: a given 
manifold's triangulation is denoted 

K =CC0, 1 , . . . ,  n), Ccrl, t r 2 , . . . ,  trp)) (3.1) 

all cr~ ~ ~C0, 1 , . . . ,  n), where C0, 1 , . . . ,  n) is a set of vertices and Ct r l , . . . ,  trp) 
is a set of  simplices over those vertices. Since there are at most No 
such sets, there are at most N different manifolds homeomorphic to the 
complex K. 

Thus, we have the following result: 
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Lemma 3.3. ZFC ~ There are at most No homeomorphism c~,,~es of  
n-dimensionial compact smooth manifolds. [] 

See Cheeger and Kister (1970a, b), where the above reasoning is 
sketched. 

Remark 3.4. The same result applies to the piecewise-linear class, with 
respect to adequate maps. [] 

The differentiable case is more delicate, due to the possible existence 
of  exotic structures (well, not in three dimensions, but we are dealing here 
with a more general case). For differentiable structures one may proceed 
as follows: if we suppose that "smooth"  means "o f  class Ck, '' 1--< k < - ~ ,  a 
compact differentiable real n-manifold is given by a set of maps 

f l:  B l u R " , . . . ,  fk: Bk~R",  k<oJo (3.2) 

and 

where 

hu: fj(Bi n Bj) ~fi(Bi  c~ Bj) (3.3) 

hij ---f~ ~ f71]fj(Bi c~ Bj) (3.4) 

i,j <- k, f~ and h0 ditteomorphisms. Now the Bi can be taken to be closed 
balls, and thef~ and h0 can be approximated (in the space of  all diffeomorph- 
isms of  each Bi and B~ n Bj, with the C k topology) by elements of  a dense 
countable subset. Thus, the set of  all systems of the form 

Pl: B I ~ R " ,  - . .  , Pk: Bk ~Rn (3.5) 

where k < O~o and p~ approximates f~ in the above sense; and 

Pij: pj(Bin Bj)--> PI(B, n B~) (3.6) 

where again Pu approximates hu, is an infinite countable set. Thus, our 
conclusion. 

We could also proceed in a less combinatorial way. We define: 

Definition 3.5. I f  D k is a k-dimensional disc, then H~ = D x • D n-~ is 
the handle of  index A. 

We have the following result. 

Proposition 3.6. ZFC t- If  M is a compact connected closed smooth, 
real n-manifold, then it is diffeomorphic to a reunion of handles {H~} 
joined through gluing diffeomorphisms according to the following pre- 
scription: 

[i] We are given a Morse function f on M whose critical points are 
the { x o , . . . ,  xa, . . . ,  xn}, and A is the index of the critical point. 



946 da Costa et ai. 

[ii] To each x~ there corresponds a handle HT, attached via a 
diffeomorphism f~. 

Proof. Novikov et al. (1987). �9 

Thus, in order to enumerate  compact  real, smooth n-manifolds,  we 
proceed as follows: every compact  n-manifold M admits a Morse-Smale  
function h such that: 

[i] h(xa) = h(x~,) if  and only if h =/z.  
[ii] h(xa) < h(x~) if  and only if A </~. 

[iii] There exists a single critical point  x0 and a single xn. 

For the p roof  see Novikov et al. (1987). As a consequence, the informa- 
tion we require in order to characterize M through a handlebody decomposi-  
tion is contained in an ordered set 

(Xo,..., (x~, x~,. . . ,  x~%.. . ,  (x~,..., x~)),..., x,) 
To each critical value we then attach a "gluing" diffeomorphism p(a k), 

so that we in fact have an ordered set of  ordered sets of  pairs of  the form 
(k) _(k)\ xx , p~ ,, where the p ' s  are taken from a countably dense set in an adequate 

space of  diffeomorphisms (possible, since we are dealing with compact  
objects). 

And, well, the set of  all such objects is an infinite denumerable set. 
Therefore,  we have the following result. 

Lemma 3.7. ZFC v- There are at most No compact  manifolds modulo  
diffeomorphisms. 

3.2. Cylindrical Spacetime Supports in Boolean-Valued and 
Forcing Extensions 

We have the following corollary: 

Corollary 3.8. [i] ZFC ~- There is a 1-1 and onto function f :  tOo~ At, where 
At is the set of  all cylindrical spacetimes. 

[ii] ZFC ~- for all n, n s tOo if and only if Mn = f ( n )  s At. 

We do not care about  the form of f .  It is enough to know that it exists. 
Now let B ~ V be a complete Boolean algebra and let V B be the correspond- 
ing Boolean-valued universe. Also let x c V~--~ ~ s V 2 _ V B be the embedding 
of  elements from V into V B. Then we have the following result. 

Proposition 3.9. ][Mn ~ At[[ = V . . . .  [[r~ = nt[. 

Proof. From ZFC ~- Vn( (n  c tOo)'~-~ (Mn ~ At)), we get 

V B ~ Vn( (n  ~ t~o)~-~(M, ~ At)) 
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that is, 

IIA4.  il=lln o3011=- V II, --nll I 
m ~ t o  o 

Corollary 3.10. V B ~ Jd = ~/[. 

That  means: The set of  all cylindrical spacetime supports gets no new 
elements when we expand our universe from V to V B. Now let us write 

M = V (a, ^ ~/i), V a, = 1 (3.7) 
i ~ I  i c I  

Then we have the following. 

Corollary 3.11. For M as above, V B ~ N ~  ~ if and only if 

V 8 ~ N = M  

So, we have "mixed"  spacetimes in V B. An interesting case is given by 
M = a ^/~/, ,  a < 1, a ~ B. Then we have the following. 

Corollary 3.12. [i] IlM=| [ii] I f  we put M ' = ( a ^ h ~ / , ) v  
(a* ^ O),  then V R ~ M = M' .  [iii] V B ~ M ~ ~t. 

Corollary 3.13. V ~ ~ ( M  = 0 )  v ( M  = 1~I,). 

Now, as B can be seen as the underlying algebra of  a strictly positive 
probabil i ty measure /z on an adequate space, the preceding result means 
that there is a / z ( a * )  chance that M "is"  the empty set, or there is a / ~ ( a )  
chance that M "is"  a standard manifold. 

Finally let us cut down from V to a countable transitive model M for 
ZFC,  and let M e be the corresponding Boolean extension. We then go to 
the quotient as described in Section 2 and get the forcing extension M(B).  
The situation in M(B)  is somewhat  different, as we have no mixtures: 

Corollary 3.14. M(B)  ~ Every M ~ J/~ is standard. 

Now for M '  as above, we have: 

Corollary 3.15. Either M(B)  ~ M ' =  ]~/n or M(B)  ~ M ' - -  •. I 

Thus, things are much neater in forcing extensions, as it concerns 
cylindrical supports for spacetimes: everything is either standard or nothing. 
We will require those results in Section 5. 

Notice that  the enumerat ion techniques used here to determine the 
cardinality of  equivalence classes of  smooth manifolds modulo diffeomorph- 
isms both in the compact  and in the noncompact  case allow us to code 
each cylindrical spacetime by a finite sequence of  symbols, while noncom- 
pact spacetimes are coded by denumerably infinite sequences of  symbols. 
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Obviously, infinitely many sequences may code elements of  the same 
diffeomorphism class, but we will easily notice (and make explicit in the 
next section) that set-theoretic genericity appears for noncompact  spaces 
in the way one pastes together local coordinate domains. In that sense, it 
is a global property of  those manifolds. 

4. GENERIC N O N C O M P A C T  SPACETIME SUPPORTS 

We first quote a well-known result: let M he a noncompact  C ~ real 
4-manifold. Then, the following holds. 

Proposition 4.1. ZFC F- M admits a nondegenerate Lorentzian metric 
tensor. 

Proof. See Steenrod (1951). �9 

4.1. The Set of  Noncompact Spacetime Supports Has the 
Power of  the Continuum 

In contrast to Proposition 3.1, we have the following. 

Proposition 4.2. ZFC ~-There are 2 ~o diffeomorphism classes of  non- 
compact differentiable real C k n-manifolds, 1 --- k -< oo, n > 1. 

Proof. We first show that there are at least 2 ~o diffeomorphism classes: 
let tOo be given; associate to each n ~ tOo a 2-torus T 2= S ' x  81. We index 
all those (evidently diffeomorphic) tori by that positive integer, and write 
T2(n) for each one of  those tori. Now form the connected sum 

T2(0)# " . .  # T 2 ( n - 1 ) # T 2 ( n ) ~ T 2 ( n + l ) # . . .  (4.1) 

We get a linear chain of  tori, 

# Y, T2(i) (4.2) 
i ~ t o  0 

where # ~  denotes the connected sum over the corresponding indices. 
Clearly, #Y-i~,o T2(i) can be made into a smooth noncompact  real 2- 
manifold. 

In order to establish a correspondence between some noncompact  
2-manifolds and a set of  cardinality equal to 2 ~~ we proceed as follows: if 
2 = {0, 1}, we form the product  set 2 %. To each sequence a ~ 2 %, we form 
out of  #Zi~,o T2(i) a new smooth manifold by the following rules: 

1. If  or(n) = 0, do nothing. 
2. If  a(n) = 1, # - s u m  to T2(n) c #y.  T2(i) another torus T 2, so that 

the manifold chain # Z  T2(i) will have a "dangling ring" at n. 
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If we denote by M ( a )  the new manifold we just built, we check 
that for a, fl ~2 ~ a ~ fl if and only if the corresponding manifolds 
M(a)~M(13), " ~ "  meaning "not  diffeomorphic to." Thus, the set 
{M(a ) :  a ~ 2 ~ has the power of  the continuum, and the n-manifolds 
{R"-E• ot~2 ~176 form a set of  nondiffeomorphic noncompact  n- 
manifolds with the power of  the continuum. 

We then show that there are at most 2 ~o diffeomorphism classes of 
noncompact  n-manifolds, n > 1. Every differentiable manifold has a locally 
finite atlas. Thus, every differentiable manifold can be represented by a 
locally finite atlas plus its (countable) set of  transition functions. The set 
of  all such objects, adequately coded as a denumerably infinite sequence 
of  letters, some of  which run over denumerable sets and some other (the 
local maps and the transition functions) which run over continuum-many 
objects, can have at most the power of the continuum. 

Thus, we conclude our argument. 

Corollary 4.3. ZFC ~- There exists a 1-1 and onto function f :  2~0-~ N, 
where ~r is the set of  all noncompact  4-dimensional manifolds that support  
spacetimes modulo diffeomorphisms. 

4.2. Generic Spacetime Supports 

Now, if we take V = L and if we put B = R0(2%• the regular open 
algebra of  the product  space 2 ~215 then we have the following result. 

^ 

Lemma 4.4. L B ~ There are 2 ~o set-theoretically generic noncompact  
spacetime supports modulo diffeomorphisms. 

A 

Proof First we notice that L B ~ "There are 2 ~o set-theoretically generic 
subsets o f  wo" (Bell, 1985). From the preceding corollary we get our 
result. [] 

We thus conclude that, from the strictly geometric point of view, there 
are a great many (actually a whole continuum of) set-theoretically generic 
support  manifolds for spacetimes in adequate set-theoretic models. The 
questions that arise at the present point are: 

First, are those spacetime supports physically meaningful? What is 
their physical import? How do we physically (that means, with respect to 
physically sensible theoretic constructs) recognize set-theoretic genericity 
in a spacetime support  manifold? 

Second, how does set-theoretic genericity behave with respect to 
diffeomorphisms ? That is to say, which is its behavior with respect to general 
relativistic covariance ? 
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Third, how can we detect set-theoretic genericity in the world around 
us? Can we experimentally detect it at all? 

We deal with those questions in the following sections. 

5. GENERAL C O V A R I A N C E  A N D  SPACETIME S U P P O R T S  

A spacetime (M, g) is supported by a separable Hausdorff manifold 
M. In a ZFC universe V, let us be given a countable open cover for 
M, ~ =  {U,: iewo}, so that: 

[i] U,~,,0 u, = M. 
[ii] For i # j ,  it is false that U i -  U~ or Uj ___ Ui. 

Then, we have the following. 

Lemma 5.1. ZFC ~- L e t f ~  2 %, and to each s u c h f  associate a subset ~ f  c X 
given by 

U, ~ adly',-~ f (  i) = 1 (5.1) 

~ ~ = 0 (5.2) 

Then [i] the set 

is open, and [ii] f o r f # f ' ,  

U v 
vE~f 

U V # U w  
Ve~cf Wc~f, 

f and f '  e 2'%. 

Proof. Immediate; [ii] in particular is a consequence of the same- 
numbered condition above. �9 

Let B = RO(2 ~o) e V, the regular open algebra of  the product space 
2 ~o. Then, we have the following result. 

Proposition 5.2. VB~ There is an open set U c /~r  so that for all 
standard open sets Q c /Q,  U # V. 

Proof V ~ Ik- "(~'~ is a proper subset of 2"3~ We then pick up f e  V B, 
so that VR~ " f ~ 2  ~~ and for all standard ~ e 2  '~~ f #  ~." 

Then, VB~ "For  all ff e 2 '~ 

U w" I 

So, there are new generic open sets in M's  topology in the Boolean 
extension V s [and also in the corresponding forcing extension M(B)]. But 
are such new open sets physically new? In general relativity, Einstein's 
"'principle of  general covariance" means that all objects are defined modulo 
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diffeomorphisms (local or global). As we will see, the situation is not a 
simple one, as we juggle with Boolean and forcing extensions. We will try 
to unravel its main features through a few results and examples.  

In what follows, "open  ball"  means an open set which is diffeomorphic 
to R 4 with its usual differentiable structure. 

Proposition 5.3. V B ~ Every open ball U c M is diffeomorphic to a 
set-theoretically standard open ball W c  M. 

Proof. Immediate ,  since all such open balls are diffeomorphic in M. [] 

Proposition 5.4. V ~ ~ I f  K c M is compact  such that its interior is a 
smooth submanifold of  M and such that its boundary  is also smooth,  then 
K is diffeomorphic to a standard compact  V c  M with a smooth interior 
and a smooth boundary.  

Proof. Along the lines of  the p roof  of  Proposition 3.1. [] 

We now give a few examples to show explicitly how some generic open 
sets in M (within a universe V ~) can be diffeomorphic to standard open 
sets. We proceed in the forcing extension M(B)  associated to M B rather 
than in the Boolean extension, since in that case the argument is much 
more intuitive: 

Example 5.5. In M(B) ,  let the real line R be covered with a countable 
collection of  open intervals centered at each x ~ Z with diameter  equal to 
1 + e, where 0 < e << 1. We then have a cover of  "slightly" overlapping sets. 
I f  ~ is such a cover, any U V~ c R, V~ ~ ~ and ~ properly included in ~, 
will be open and disconnected. Fix an enumerat ion for the sets in the cover 
~, and let u c 030 be a set-theoretically generic set. The open set Xu = 
U V~, i ~ u, has No connected components  (No "pieces").  However,  such a 
set is immediately seen to be diffeomorphic to, say, Z = U V~, i even. 

Example 5.6. Again in M(B) ,  let us cover R 2 with a countable set of  
open square "tiles" centered at each x ~ Z 2 and with sides equal to 1 + e 
aligned to the axes of  a rectangular coordinate system. We restrict our  
attention to the first quadrant.  We enumerate elements of  the cover according 
to Cantor 's  well-known rule for the enumerat ion of rationals, (0; 0), (0; 1), 
(1; 0), (2; 0), (1; 1), (0; 2), (0; 3 ) , . . . ,  so that we may connect those points 
with a continuous liae. Given that enumeration,  for a generic u s 030, we 
take out the tiles whose indices fall in u. We then get a plane with N O 
holes at the x 's  in u. However,  since we can draw a continuous non-self- 
crossing line through all positive pairs of  integral coordinates in R 2, we can 
"straighten up"  that line, so that the holes that we have punctured in R 2 
will fall nicely, say, in the first column in the positive quadrant.  Again we 
have a generic open set (the plane with holes at the places coded by u) 
which is diffeomorphic to a standard open set in R 2. 
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Remark 5.7. That example easily generalizes to the case when we 
puncture holes all over the plane according to some generic set coding; it 
is also valid for any R", n ~ OJo. 

Remark 5.8. Physically R 4 less the punctured holes can be taken to 
represent a flat spacetime manifold with No test particles in it. 

We have seen that set-theoretically generic open sets in M can be 
diffeomorphic to standard open sets. We now ask a related question: given 
a standard M ~ M(B) ,  do we have a set-theoretically generic open sub- 
manifold X c M that cannot be diffeomorphically mapped on a standard 
manifold? The answer is given in the next example. 

Example 5.9. Let us be given the one-sided infinite chain of  toil 
#~i  T2(i) given in Proposition 4.2 within M(B).  Clearly, that manifold is 
a standard manifold. Given the characteristic function fu for a generic 
u ~ 030, cut out a disc from each T2(n) ~ # ~ i  T2(i) if  and only i f fu (n)  = 1, 
and do nothing otherwise. The new noncompact  submanifold we thus obtain 
is open and clearly generic and cannot be made diffeomorphic to a standard 
manifold. 

Remark 5.10. However, we should notice that set-theoretic genericity 
is not necessarily determined by the spacetime homeomorphism class, since 
the existence of  continuum-many exotic R4's implies--within an adequate 
set-theoretic model - - the  existence of  continuum-many set-theoretically gen- 
eric exotic R4's that are homeomorphic  to the standard R 4. We also note 
that the Taubes end-construction that led to the proof  of the existence of  
continuum-many exotic copies of  the R 4 is mirrored (in a much simpler 
way) in the idea behind the previous example (Taubes, 1987). 

6. GENERICITY, RANDOMNESS,  AND AN 
UNDECIDABLE QUESTION 

We can talk sensibly about the set f f  of  all spacetime supports within 
ZFC, since all n-dimensional, real, smooth manifolds are diffeomorphic to 
embedded submanifolds of  R 1~§ As a result, we can realize diffeomorphic 
images of  any spacetime within R9; thus, f f  c di~ ~(R9). However, at first 
no spontaneous topological structure for A e seems to be available (what do 
we mean when we try to figure out how a sequence of  spacetime supports 
"approximates"  a given spacetime support?) 

Yet there are several quite reasonable topologies for ft. We describe 
here one that best suits our purposes; it is a rather simple topological 
structure for the set of  all 4-dimensional, smooth, real, noncompact  mani- 
folds (since we exclude compact 4-manifolds from the class of  all space- 
times); in the topology we propose Ae has a quite well-behaved geometry, 
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since it is a Polish space; the idea is that manifolds in 5~ are "close" whenever 
they share a sufficiently long "initial segment" sequence, in a manner to be 
specified below. 

We use that topology in order to show that a tentative identification 
of  set-theoretically genetic spacetime supports with random spacetime sup- 
ports leads to an undecidable question within ZFC. The suggestion that 
genetic set-theoretic objects are somehow random objects goes back to the 
Solovay-Scott  theory of  Boolean-valued models and seems to lie behind 
the motivation for those models. Scott (1967) explicitly constructs his model 
for the real line out of  random functions on the reals, and Solovay's work 
on the Lebesgue measure problem has led to at least one definition for 
randomness in sequence spaces that was shown to be equivalent to the 
Kolmogorov-Chai t in-Mart in-Lcff  characterization (Solovay, 1970; Chaitin, 
1987). 

However, as we show here, set-theoretic genericity seems to go beyond 
mere randomness; this is the content of the simple undecidability result 
that concludes the present section. 

6.1. A Topology for 5r 

We need the following results; here "smooth"  means "C~.  '' 

Proposition 6.1. ZFC ~- If  M is a real, smooth n-manifold, then M is 
triangulizable. 

Proof. See Whitehead (1940) and Cairns (1940). [] 

We are dealing with spacetime supports; that means that our interest 
is restricted to 4-dimensional, real, smooth noncompact  manifolds. Thus, 
we require: 

Proposition 6.2. ZFC ~- If  M is a noncompact  4-dimensional real topo- 
logical manifold, then it is smoothable, that is, it can be given a smooth 
atlas which is compatible with the topological manifold structure. 

Proof. See Quinn (1982). [] 

Therefore, we have the following result. 

Corollary 6.3. ZFC t-- If M is a simplicial complex with a 4-dimensional 
real topological manifold structure, then M is smoothable. 

We also need some other properties of  the atlases for our manifolds; 
they are listed below. Given an atlas for an n-manifold M where the local 
coordinate domains are the {Bi : i ~ tOo}, and (_Ji Bi = M, we ask that: 

[i] Each coordinate domain B;, i ~ tOo, in the atlas for the n-manifold 
M should be diffeomorphic to an open n-ball. 
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[ii] The atlas satisfies the finite intersection property,  that is, given a 
coordinate domain  B~, it will meet at most  a finite number  of  other 
coordinate domains B s in the atlas. 

[iii] For any two i , j ,  i ~ j ,  B~ ~ B j  or Bj  ~ B, .  

For those atlases, any n-dimensional  smooth manifold is given by two 
(finite or denumerably  infinite) sequences of  maps  

Pl: B I - ~ R n , - - - ,  Pi:  Bi ~ R n ' '  " (6 .1)  

" " " Po : p j (  B~ n B j ) - ~  p~( B ,  c~ B j )  . . . (6.2) 

where the p~ and p~j are the local coordinate-defining diffeomorphisms, 

Po = Pi o p f l l p j (  Bi  n B j ) .  
We abbreviate: 

~k m=B,n~jn- - ,  nB~ (6.3) 

Then, we have the following. 

D e f i n i t i o n  6.4. I f  M is an n-dimensional,  smooth,  real manifold,  then 
the cover {B~} is a g o o d  cover  if  and only if all Buk...m are diffeomorphic to 
an open n-ball. 

P r o p o s i t i o n  6.5. ZFC ~- Given M as above, M has a good cover which 
satisfies conditions [i]-[iii]. Moreover,  that cover is homeomorphic  to the 
open stars in a triangulation for M. 

Proof. Proof  is given in Bott and Tu (1982), pp. 42 and 190. There it 
is shown that, given a cover that satisfies conditions [ii] and [iii] at the top 
of  this subsection, we can always choose a good cover which refines it. �9 

As we wish to code smooth manifolds as finite or denumerably infinite 
sequences of  integers, we prepare an infinite effective enumerat ion of  all 
possible sets {B~j...k}: 

We require: 

[*] Given any B 0 . . . . .  then i < j <  . . .  < m .  
[**] We order the B~ i . . . .  by the following rules: (1) We first order as 

a growing sequence the sums s = i + j +  �9 �9 �9 m ;  (2) given each value So for 
that sum, we devise an ordering rule for the finite collection of sets B~ ....  
so that i + j  + �9 �9 �9 m = So. 

We get something like 

c~ = {Bo~, Bo2, Boa, B12, Bo12, Bol, B13, Bo~3, �9 �9 .} (6.4) 

We have shown the following. 
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Lemma 6.6. ZFC ~- There is an effective (that is, computable) 1-1 and 
onto map A : c~-~too. The map A also induces an effective 1-1 and onto 
map from the set F in (~)  of  all finite subsets of  ~, A*:Fin(Cr too. 

We denote by (too)~ the coding we get for all finite subsets of ~ onto 
the natural numbers. Similar codings denoted (tOo)% will be used below for 
some ~i c ~g. 

We will use the effectiveness stated by the preceding lemma in the next 
subsection. The ~ c cr are also effectively constructed. Now in order to 
map Se one-one  and onto (too)~ 

1. We map all coordinate domains in our good cover ~ = {B~: i e OJo} 
1-1 and onto tOo; let (tOo)e, denote the positive integers under such a coding. 

2. We select a dense countable subset ~r = {Pi : i ~ ~Oo} in the space of 
all diffeomorphisms from the B~ onto R4; we then form ~'%. A coordination 
for the cover ~ is then a couple (~ ,  ~p), ~p ~ ~ "~ given by the sequences 
(n, ~ ( n ) ) ,  n ~ (tOo)~- 

3. We then describe the good cover through its elements in qg. We start 
with Bo. Bo meets a finite number of  elements in the cover @, that is, a 
finite set Co C cr where all elements in Co are of the form Boo .. . .  . As Co 
is a finite subset, given the coding described above for (tOo)%, where 
~o = { ' ' "  Book . . . .  . .  "}, we determine a positive integer no. We finally put 
FM (0) = no. 

4. We choose the smallest index after 0 in the Bo~j..., say j, and put 
j = 1. We then renumber everything accordingly (it is just a permutation), 
and proceed to the next step, with the new B1. 

5. Given constructions for all Bi, i < k, we enter the kth step. We 
exclude from c~ all sets that have already been used in the preceding steps 
and are not available any longer; we then get ~r and (tOo)%. We choose 
the port ion of  the good cover with index k and get the corresponding nk. 
We write FM(k)= nk. We then choose the smallest i in the Bk~... and 
renumber it i = k + 1; and proceed to the next step. 

Remark 6.7. Notice that we have described a map from the cover for 
M into tOo. However, since any F ~ (tOo) ~ will be thus associated to a good 
cover for a manifold in 5 e, that is, we can have any F = F~  in the preceding 
construction, each element of  Sr is denoted by a unique sequence 
(F~(n) ,  r  whence it is easy to get the desired 1-1 and onto map 
~ : ~e-~  (too)~O. 

We have proved the following. 

Proposition 6.8. ZFC ~- There is a 1-1 and onto map ~:Se~ (tOo)~ 

Corollary6.9. ZFC f- There is a 1-1 and onto correspondence r : Ir-> 6e, 
between the set of  all irrationals I r c  R and 6e. 
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Proof See Hinman (1978). �9 

Corollary 6.10. ZFC ~- There is a 1-1 correspondence p:BIr-~Sr  
between the set o f  all binary irrationals B l r c  [0, 1] c R and 5r 

Proof Binary irrationals in the unit interval are the reals whose binary 
expansion does not end in an infinite succession of  zeros or ones. Proof  is 
as above. �9 

Definition 6.11. We endow O ~ with the topology induced (and coin- 
duced) from ~, r ,  or p above. 5~ is thus a complete and separable metric 
space, that is, a Polish space; moreover,  it is totally disconnected. 

Remark 6.12. The above construction looks quite cumbersome;  it could 
be abbreviated as follows: from Corollary 6.3, we could realize all infinite 
complexes with a topological manifold structure and dimension 4 within 
R '% with the product  topology,  which is also a Polish space. I f  we now 
restrict our  attention to complexes thus realized within R ~ whose vertices 
have rational components ,  we get a residual G~ c R'% which again is a 
Polish space. Moreover,  there is a homeomorph i sm between that G~ and 9 ~ 

However,  our  construction emphasizes what is effective and what is 
not in the elements of  90 , while effectiveness is much less clear in the result 
we have just sketched. 

6.2. Computability, Randomness, and Undecidability in ~9 ~ 

We begin as follows. 

Definition 6.13. M ~ 5 ~ is computable if and only if FM is computable.  

Then, we have the following. 

Proposition 6.14. ZFC ~- The map ~ sends computable  objects over 
computable  objects. 

We can finally assert the following. 

Definition 6.15. M ~ SP is K[olmogorov]-C[haitin]-random i f  M =  
p(tr) ,  and tr ~ BIr is an infinite one-sided KC-random binary sequence. 

For that characterization for randomness  see Chaitin (1987). Then the 
following holds. 

Proposition 6.16. ZFC ~- The set of  all KC-random spacetime supports 
in 6r is residual and of  full measure,  in the induced topology and measure.  

Proof Through the homeomorph i sm p. �9 

Can we equate " randomness"  and "set-theoretic genericity"? Set- 
theoretic genericity, as (intuitively) " o p p o s e d "  to G6del 's  constructivity, 
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seems to introduce faceless, irrecognizably random objects in our theory. 
That intuition is reinforced by the Scott-Solovay Boolean models, which 
originally were built out of random functions and Borel algebras. However, 
we have the following. 

Proposition 6.17. The sentence "The set of KC-random physically 
distinct spacetime supports equals the set of set-theoretically generic physi- 
cally distinct spacetime supports modulo a meager set" is undecidable 
within ZFC. 

We must first say what we mean by "physically distinct" spacetimes. 
We factor 5 e by the action of the group of smooth diffeomorphisms; we 
proceed as follows--after realizing the elements of 5 e within R 9 through 
Whitney embeddings, we collapse diffeomorphic spacetimes modulo the 
action of the group ~ of smooth diffeomorphisms of R 9. We then get the 
quotient space 5e/~, which we endow with the projection topology. 

Definition 6.18. W = f e l ~  is the set of physically distinct spacetime 
supports. 

W = b~  is again a Polish space, and the set of KC-random objects 
in 6e is again mapped onto a residual set. 

We have the following. 

Lemma 6.19. V = L  ~-a "The set of KC-randorn physically distinct 
spacetime supports equals the set of set-theoretically generic physically 
distinct spacetime supports modulo a meager set." 

Proof. Immediate, since V=L ~ "The set of generic objects is 
empty." [] 

For the affirmative result: we start from a universe L B ~ ZFC + 2~o> 
N1 + Martin's Axiom. If  IXI denotes X's  cardinality, we know the following. 

Proposition 6.20. L B ~ " I f  X is Polish and U c X is such that 1UI < 2~r176 
then U is meager in X." 

Proof. See Kunen (1983). [] 

Also, we have the following. 

Lemma 6.21. L B ~ "lsft = N~." 

Proof. By cardinal conservation (Bell, 1985). [] 

Lemma 6.22. L B ~ "The set of generic spacetime supports 6e-S~ is 
residual  in 6e." 

Thus, as the residual sets on any topological space X form a filter, we 
have the following result. 
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Proposition 6.23. L B ~ "The set of  KC-random physically distinct 
spacetime supports equals the set of  set-theoretically generic physically 
distinct spacetime supports modulo a meager set." 

Proof. Immediate, by going to the quotient in 5e/~. �9 

Remark 6.24. Do they coincide? The answer is, no. First, there are 
Gtdel-construct ible random sequences in the BIr ~ L n. Also, if u ~ BIr s L n 
is generic, we can easily get another sequence f ( u )  which does not satisfy, 
say, the law of  large numbers, and which will not be constructible. 

Thus, we have seen that we cannot prove within ZFC that set-theoreti- 
cally genetic objects equal KC-random objects (modulo some irrelevant 
set). Now can we somehow sensibly and rigorously argue that both sets 
coincide modulo some small set? We can. 

Remark 6.25. Suppose that we believe that there is a proper  noncount- 
able class V ~ ZFC. We then use the informal Ltwenheim-Skolem theorem 
to cut down from V to a countable model M, which we further restrict to 
a constructible countable universe L c V, everything being made transitive 
through Mostowski collapsing, if needed. Then we have that the binary 
irrationals (BIr )Lc  BIr in V, due to transitivity. When we make a forcing 
extension L(g),  we require a generic filter g, which in our case can be taken 
in 2 ̀ ~ Now that filter g ~ L, but will lie in BIr - (BI0  L. We can easily show 
that the set (with respect to V) of all generic g thus obtained is residual 
and has full measure in BIr. Moreover, it does not coincide with the set of  
all KC-random binary sequences in BIR, for there are random binary 
sequences in BIR that are not set-theoretically generic through the usual 
construction o f  g (those in L), while there are generic filters g that are not 
random (they violate, say, the law of  large numbers) (Feferman, 1965; 
Hinman, 1978; Doria et al., 1987). 

Thus, we can informally argue that "almost all" generic sequences are 
r an dom - - a nd  therefore that randomness and genericity will informally 
coincide for most spacetime supports. However,  we cannot prove that 
within ZFC. 

7. C O M M E N T S  AND INTERPRETATIONS 

We can thus summarize our results in the previous sections: 

1. Cylindrical spacetime supports from a countable set, modulo 
diffeomorphisms. Thus, we gain nothing when we make forcing extensions 
in the underlying set-theoretic model. Yet, one should pay attention to 
possible physically sensible interpretations for those spacetime supports 
that are in part equal to a given manifold, and that are in part equal to the 
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empty set, within a Boolean extension. We believe that they can be given 
a quite interesting fractal "dust" structure (da Costa and Doria, 1989a). 

2. Set-theoretically generic objects appear when we consider the class 
of arbitrary noncompact 4-manifolds in adequate forcing extensions. 
Depending on the model, set-theoretic genericity may even equal topological 
genericity (modulo a meager set). Thus, set-theoretically generic spacetime 
supports are the typical spacetime supports in such models. 

3. Set-theoretic genericity for spacetime supports is a global phenome- 
non. Also, it is not determined by the manifold's homeomorphism class, nor 
by its connectivity (or cohomology or homotopy) properties, despite the fact 
that such properties may sometimes imply a generic structure for the mani- 
fold. Local domains diffeomorphic to an open ball and compact domains 
are always standard. 

4. Finally, we can intuitively suggest that "most" set-theoretically gen- 
eric objects should look like random objects. One must be careful here, 
since when we try to prove it within ZFC, a well-known argument shows 
that the identification between genericity and randomness is an undecidable 
question. Yet we can still argue in favor of that identity with the help of 
an informal but mathematically sensible proof of the coincidence of both 
sets of objects in the case in which we are interested, modulo a meager set. 

We have not explored here the case of generic fields over standard 
domains. Those sets of fields have in most cases the power of the continuum, 
and even if we factor them modulo diffeomorphisms, we still get a set with 
the power of the continuum. That is the case, for instance, of gravitational 
metric tensors over a fixed spacetime support. We intend to discuss that 
situation elsewhere, since it has been suggested that topologically generic 
metric tensors on a given spacetime are random (Fischer, 1970). 

We thus propose that the search for set-theoretic genericity in the 
physical world around us should be a search for randomness in that world. 
We may suggest the following scenario: given an "almost standard" forcing 
extension for the ZFC axioms (an extension where the whole of classical 
mathematics is true), we believe that set-theoretic genericity might appear 
as some sort of totally uncontrolled or unexpected randomness within our 
observational data. Somehow our theoretical constructs and observational 
tools should be able to cope with some, say, well-behaved randomness 
within our experience. Yet there might be some other irreducible kind of 
randomness within that empirical domain that would best be dealt with by 
the concept of set-theoretic genericity. 

The main problem would then be how to separate the "nice" kind of 
randomness from the "nasty" species--if our suggestion follows the right 
track in those matters. 
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